DSN Station Clock Synchronization
by Maximum Likelihood VLBI

W. J. Hurd

Communications Systems Research Section

The clocks at the DSN ground stations can be accurately synchronized by very
long baseline interferometry (VLBI) at lower operational cost than with the existing
Moon bounce system. More than an order of magnitude improvement in accuracy
can be attained using existing DSN hardware, and ultimate accuracies on the order
of 10 nanoseconds are possible. The purpose of the analysis described in this article
is to optimize the acquisition and processing of the VLBI data subject to hardware
constraints, in order to achieve the best possible time synchronization estimate for
a given amount of data, and the most efficient usage of the DSN facilities.

l. Introduction

The clocks at the DSN ground stations can be synchro-
nized by using the station antennas as very long baseline
interferometers receiving the random signal from a quasar
radio source. Synchronization accuracies more than an
order of magnitude better than currently attained by the
Moon bounce system are achievable using only existing
DSN hardware. A semi-real-time system could be imple-
mented using the TCP 920 computers for data acquisition
and the Ground Communications Facility (GCF) to bring
the data to a central point for processing. Operational
costs should prove to be less than for the existing Moon
bounce system.

The fundamental limitations on the time synchroniza-
tion accuracy achievable by very long baseline interfer-
ometry (VLBI) are due primarily to the uncertainties in
the station position, the radio point source position, and
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the propagation delays in the atmosphere. These limita-
tions are currently on the order of 100 nanoseconds (ns),
but are expected to be reduced to less than 10 ns within
a few years. Hardware restrictions can, of course, place
practical limitations on the accuracies which can be
achieved with a given implementation. Use of the XDS
920 computer for data acquisition limits both the sampling
rate and the number of samples which can be taken phase
coherently, and the GCF data rates restrict the amount
of data which can be handled in a reasonable length of
time to a few million bits. With these restrictions, synchro-
nization accuracies of 300-500 ns are achievable. This is
compatible with the current inherent limitations of about
100 ns.

The pertinent analytical problem considered here is the
optimization of the processing of the received signals in
order to obtain the best possible estimation of the time of
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arrival difference with a given amount of data. The
amount of data required for a given accuracy of time sync
is thus minimized, which is important for the following
reasons:

(1) The amount of data which must be stored and
buffered at the stations and then transmitted to the
computation center is reduced. This is important
both because of the storage requirements and be-
cause of the low data rates of the GCF.

(2) The number of computations required is propor-
tional to the number of data samples and is thus
reduced.

(3) The observation interval is shortened, which re-
duces the station time required for data acquisi-
tion, and reduces the stability requirements of the
local oscillators, which must be phase stable over
the observation time. The rubidium frequency
standards now in the DSN have adequate stability
for the system proposed here, but not for existing
systems with much lower sampling rates and less
efficient processing.

Il. Summary of Results

The primary objective of this work is to optimize the
filtering, sampling, and processing of the received radio
signals for the estimation of time synchronization. The
method of analysis also leads to quasi-optimal estimates
of signal strength and fringe rate and phase, conditioned
on the sample values, although different sampling strate-
gies might be used if these were the parameters of primary
interest. This is accomplished by deriving an approximate
maximum likelihood estimator (MLE) for the time of
arrival difference and the other parameters under appro-
priate assumptions as to signal statistics and mechaniza-
tion limitations. Some of the key results of the analysis and
the resulting estimator are:

(1) The two orthogonal components of the signal from
the radio source should both be utilized. This can
be accomplished by dual-channel (phase quadra-
ture) processing at both receivers. Dual-channel
processing has an inherent 6-dB advantage over
single-channel processing, which appears to be the
standard means of processing VLBI signals at the
present time. The gain is 6 dB per sample, but only
3 dB per bit of data, since there are twice as many
bits per sample. The gain arises from utilization of
all of the received signal energy and therefore
applies to all VLBI processing, not just to time
estimation. For time synchronization, an additional
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1.2-dB gain can be realized by properly skewing
the sampling times in the two channels.

(2) The MLE results naturally in an optimal method for
estimating time synchronization to greater accuracy
than the time interval between adjacent samples.
This is important because accuracy significantly
better than the sampling interval is required. Pre-
vious methods for time estimation generally rely on
interpolation between the sampling times using the
appropriate correlation function.

(3) The MLE procedure properly accounts for the
variation in time difference over the observation
time. This is important because the change in the
time difference can be greater than the desired
synchronization accuracy.

A. Estimator SNR

An approximate MLE is derived under the assump-
tions that the energy emitted by the radio point source is
white and gaussian, that the received signals at the two
stations are sampled at the same uniform rate, and that
pre-filtering assures that all samples at each ground sta-
tion are independent of one another. Assuming that the
local oscillator phases do not change, the approximate
MLE procedure is to square law envelope detect for
each possible time difference, using weighting coefficients
appropriate for each time difference, and to choose the
time difference which maximizes the detector output. If
insufficient data can be taken while the phase remains
constant, the process is repeated and the detector outputs
suitably combined. If the envelope detection is performed
using N data samples, and this is repeated L times, then
the detector output signal-to-noise ratio (SNR) is of the
form

L
R=5—— (1)
1+ o
where

In the expression, p? is the product of the receiver input
SNRs and there are NL total sample points at each re-
ceiver. The factor K depends on the sampling method
and ranges from % for real samples (one channel at
each receiver) to 0.657 for complex (quadrature phase)
samples. The factor K, depends on the quantization,
and ranges from (2/7) for hard limiting to 1 for no
quantization.

When the number of bits of data which can be taken
is the limiting factor, then complex sampling is about
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42 dB better than real sampling. Also, it appears best
to hard limit. If the limiting factor is the sampling rate
in bits per second, then hard limiting is certainly opti-
mum, since the estimation error is inversely proportional
to the sampling rate. Also, it may be better to use real
rather than complex samples if the SNR is sufficiently
high, but to use complex samples if the SNR is marginal.

B. Time Estimate Error

An approximate relationship for the mean square error
in the time estimate is derived in Section VIII. The analy-
sis has been confirmed by simulation. Results indicate
that the rms error is-slightly less than the time between
samples divided by R%.

C. Example System

A system could currently be implemented in the DSN
using one 64-m-diameter antenna and one 26-m-diameter
antenna, with noise temperatures of 25 K and 40 K, and
using an XDS 920 for data acquisition. The computer
limits the sampling rate to 500,000 data bits per second,
and the total number of bits which can be acquired while
the oscillator phases remain constant to about 300,000.
Using hard limiting and complex sampling, the detector
output SNR is about 1.2 LS?, where § is the radio source
intensity in flux units and the computer memory is filled L
times. Of the radio stars which are point sources over the
baseline from California to Australia, approximately ten
are known with intensities of 2 flux units (fu) or greater,
and four with intensities of 3 fu or greater. Time sync to
significantly better than the 4-microsecond (us) sampling
interval can be achieved with the strongest four sources
using only one batch of data, and with many sources
using 5-10 batches of data.

lil. Problem Formulation and Data Sampling

The radio energy emitted by the radio point source is
essentially white and gaussian. However, because we can
only observe the energy in the bandwidth of our receivers,
we can consider the signal to be a narrow-band gaussian
process. The signal plus noise at the outputs of the two
receivers can be represented as

X (t) = [n(t) + s(t)] cos (o1t + é1)

+ [m(t) + 7 ()] sin (it + 1) (3)
and
Z(t) = [p(f) + s(t — 8)] cos (wst + ¢2)
+ [g (&) + r(t — 8)]sin (st + ¢2) (4)
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where
t = time
= § (t) = difference in time delay
oy — o, = difference in doppler shift
¢1, . = random phase angles

s (t),r (t) = noise processes representing
signal

n(t),m(t),p(t), q (t) = receiver noise

All of the noise processes are assumed independent and
band-limited only by the receivers. The difference fre-
quency o, — o, and phase ¢; — ¢ are assumed to be con-
stant over the observation time; however, the time delay
8 (t) varies due to the rotation of the Earth. We can
assume this to be linear and known, & (t) = 8, + §t. The
difference frequency and phase are essentially constant
only because the change in 8 is small compared to the
reciprocal of the difference frequency.

Suppose now that we observe X (t) beginning at ¢ =0,
and Z (t) beginning at ¢ = . This time offset ~ is not pre-
cisely known, because the clocks at the two stations are
not precisely synchronized. We desire to form an estimate
% of + from the received signals, and to use this estimate
to synchronize the clocks.

In order to extract the maximum information from the
received signals, both the sine and cosine components of
the random processes must be processed. The received
signals are thus demodulated to baseband in two chan-
nels, using quadrature phase reference signals derived
from rubidium frequency standards which we require to
be frequency and phase stable over the observation inter-
val. The signals are then filtered and sampled, with the
filtering assuring that all samples in each channel are
independent of one another. The demodulated and fil-
tered signals, with = denoting convolution, are

x(8) = [X (£) cos (wst + ¢3)] % ha () (5)
y (1) = [X () sin (wgt + ¢3)] % hy (t) (6)
at the X receiver, and

2(8) = [Z () cos (wit + )] # P (8) (7)
w () = [Z(#)sin (wit + ¢4)] * ho (t) (8)

at the Z receiver. We have represented the filtering by
convolutions with h, h,, h., and h,, the filter weighting
functions.
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Since the frequency and phase reference for a narrow-
band process can be chosen arbitrarily, we can choose the
frequency and phase reference of either X or Z arbi-
trarily. For convenience, we chose w, = ws and ¢, = ¢,
and we define v = v, — v, and ¢ = ¢2: — ¢,. The differ-
ence frequency o, also called the stopped fringe rate, is
determined by the relative doppler between X and Z, as
reflected by ., and by the reference o,. The difference or
fringe phase ¢ is random, and uniformly distributed. With
this simplification, the observed processes are

x(t) = [n(t) + s ()] = ha (2) (9)
y@) = [m@) +<t)]«h,(t) (10)

2(t) = {[p(t) +s(t — 8)] cos (ot + )
tlg@+rt—8)lsin(ot +¢)) xha(t)  (11)

w () = {lq(t) +r(t — 8)] cos (ut + ¢)
—[p@®) +s(t—8)]sin(ot + ¢)}xhu(t) (12)

The four observables are now sampled, all at a uniform
and identical rate, with a sampling interval A. Indepen-
dence of the samples in each channel is assured by hav-
ing the weighting functions be zero outside of the interval
(0,4), and by the whiteness of the noise processes. A re-
maining parameter which can be varied is the relative
times of the samples in the sine and cosine channels, so
we leave this arbitrary. As references, we assume that the
sampling of x (t) begins at ¢ = 0, and the sampling of z (¢)
begins at t = 7, i.e,, at the delay we wish to estimate. The
samples of y and w occur A, and A, after the samples of
x and z. Thus, the samples are

X; = x(ja)

Y, =y(ja+ Ay)

N
Il

z(jA + 1)
Wi=w(a+r+4,)

At this point we make the further assumption that o is
a very low frequency compared to the sampling rate, so
that the factors cos (ut + ¢) are constant over A and can
be brought outside of the convolution integrals. This
assumption is reasonable, since » can be chosen by the
experimenter.

We now normalize the observables to unit variance,
and define the input SNR to be

. S.S,
P (N, +S)(N.+8,)

(13)
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where S,, S,, N,, and N, are the input signal and noise
spectral densities. In practice, p will not exceed 10-2. The
observable covariances can then be expressed as

E{XiZ;} = Aij = pa;jcos (jAw + ¢) (14)
E{X;W;} = Bi; = —pb;; sin (jAo + ¢) (15)
E(Y:Z;} = Ci; = pey; sin (jho + ) (16)
E{Y:W;} = D;; = pd;; cos (jAw + ¢) (17)

The aij, bij, cij, di; reflect the dependence on = — § (),
and are constant for fixed i — j when r — & is constant. In
any case, they vary slowly in i — j. Also, the sinusoidal
variation in the covariances is slow in §, because wA < < 1.
Thus, for each i — f there is a range of j for which the
covariances are essentially constant.

IV. Derivation of Approximate Maximum
Likelihood Estimator

The general procedure of maximum likelihood estima-
tion is to maximize the a posteriori probability density
function (pdf) of the observables, conditioned on the
unknown parameters. The values of the parameters which
maximize the pdf for the given set of observables are
chosen as the maximum likelihood (ML) estimates. The
parameters to be estimated here are p, 7, ¢, and o. In this
section, we derive approximate maximizations of the pdf
with respect to p and ¢. The resulting function must then
be maximized numerically with respect to + and « in order
to obtain estimates of all the parameters.

The first step in our problem is to find the joint pdf of
the observables X;, Y;, Z;, and W;, conditioned on the
unknown parameters p, ¢, 7, and ». This pdf depends
only on the conditional covariance matrix, since the ob-
servables are jointly gaussian and zero mean. Suppose we
define a row vector U having as its components all of the
observables:

t >XN3Y1’Y2> T 7YN’
' >ZN7W1,W27 tr 5WN) (18)

U = (Xl, XZ) :
Z1,223 s

where N is the number of samples of each variable.

Then the covariance matrix of U is

0 A B
0 I C D

A= (19)
At Ct 1 0
B: D' 0 I
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where A, B, C, and D are the covariance matrices with
elements A;;, B;j, etc., given by Egs. (14) through (17),
and the conditional pdf of the observables is

1
l AC|% exp {— 5 UA-IUt} (20)

P(U'p,gb,'r,w) =

The covariance matrix A depends on the parameters p, ¢,
7, and o, and ¢ is a constant.

The major problem at this point is to invert the covari-
ance matrix. We can do this only in series form, and it is
the truncation of this series in the maximization proce-
dure which causes our estimator to be only approximately
maximum likelihood.

To proceed we define a matrix P such that
A=I1+P (21)

The matrix P has at most four nonzero elements in each
row and column, because A, B, C, and D have at most
two nonzero elements in each row and column. Further-
more, the nonzero elements of P are proportional to p and
do not exceed p in absolute value. Thus we can expand
A~' in a power series, and bound the terms:

AT=I-P+P—P+ - (22)

Since the two principal quadrants of P are zero, the prin-
cipal diagonal elements of P* are zero for odd n. The
other elements are bounded by

max ’ (P"):;

i, 7

= 4p max ‘ (P™1); I

i

= 4n~1 pn (23)
where (P");; denotes the ij element of P,

Closer bounds can be obtained utilizing properties of
the cross covariances for particular cases.

The conditional pdf can now be written as
P(Ulp,¢, -r,w) =

Cexp{* % U(I+Py Ut — %logdet I+ P)} (24)

Using a well-known matrix identity,

log det (I + P)="Trlog(I + P)

p: p» pt
—Tr(P—"2—+§'_Z+"') (25)
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The odd power terms can be deleted, since the prin-
cipal diagonal of P* is zero for odd n. Thus

We now define a likelihood function L, (U|p, ¢, 7, ) as
the exponent of the conditional pdf, and maximization
of L, is equivalent to maximization of the pdf.

1
L1(Ulp,¢,T,m): —§U(I—P+P2_ PP )Ut

1 p? P+
+§Tr<7+f+ ) e7)

It is not feasible to maximize L, analytically with re-
spect to any of the parameters without neglecting terms
in P of higher order than P?. With this approximation, we
can maximize with respect to p and ¢. Since normally -
and o are the parameters of primary interest, the approxi-
mate solutions for p and ¢ usually suffice, but greater
accuracy can be obtained numerically if required.

To proceed, we define a new matrix Q by
A B

O ¢s

0=-pP=—- (29)
P p

v o O

Bf Dt
Next we drop the UIU! term in L,, which is independent
of the parameters, to obtain

1 1
L. (Ulp, ¢, 7,0) =5 U(pQ — pQ) U + 7 p* Tr (Q?)

(29)

By differentiating with respect to p, we see that L. is
maximized for the conditional estimate of p

UQuU!
2UQU* — Tr (Q?)

A
p=

(30)

The denominator of this expression can be approximated
by its mean, which is Tr (Q?), so

. UQuU

=T (09 (31

The variance of the denominator of Eq. (30) is also on
the order of Tr(Q?). Therefore, since Tr(Q?) = 4N, the
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approximation is good when N is large, say 10* or greater,
which will always be true in VLBI problems.

A new likelihood function is now obtained by substi-
tuting the value of § into Eq. (29), and again approximat-
ing UQ*U* by Tr (Q?):

.. [UQU*P

L3 (UI P> ¢> T “’) ~ Tr (Qz) (32)

Since the elements of Q vary slowly except for the sinu-
soidal variation, Tr(Q?) is essentially independent of Q
and o so long as"NAw > > r. This can be assured by con-
trolling o by selecting the local oscillator frequencies.
Neglecting any slight variation of Tr (Q%), L, can be
maximized over ¢. To do this, Q is expressed

Q =Rcos¢ + Ssing (33)

where R and S do not depend on ¢ and are given by

O &

R= (34)
R, O

S = (35)
S O

where

R, = (aij cos jAo)
(¢ij sinjAa)

_ (bij sin 1Aw) > (36)
(dij Ccos wa)

—(a;; sin jAw)
Se =
(C,’j cos iAm)

- (bij Ccos iAu)) >
(37)
- (dij sin an))

The derivative of the likelihood ratio with respect to
¢ is then

d L= 2(UQU*) U (Scos¢ — Rsing) U!

d¢ Tr (Q?) (38)
and the value of ¢ which maximizes L, is
A Usu!
¢ = Arctan URUY (39)
The new likelihood ratio is the maximum of L,
URU")? + (USU")?
L (B, §nu) = LUBT) + (USUY (40)

Tr (Q?)
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This is as far as we can proceed analytically. To find
the final approximate ML estimates of all the parameters,
L is maximized numerically over r and ». When only % is
required, o is usually known a priori, so that the numeri-
cal maximization is only over one parameter, r.

V. Probability Distribution and SNR
of the Estimator

The estimation procedure is to compute L}, $, ®j, T3)
for all possible values of w; and r; in the regions of un-
certainty of » and 7, and to choose as 4 and # the values
of v; and r; which maximize L. In order that the esti-
mation error be small, it is important that the maxi-
mum of L occurs near » and . For example, suppose
that » is known, but the uncertainty in - is over a range
of MA, and we compute L for ; = + + ia + € 1=
—M/2, —M/2 + 1, - M/2 where € is small. L is
computed for M independent incorrect values of r;, and
for one value, = + ¢, near the correct value r. If any of
the M values of L for incorrect r; exceeds the value for
7 + € there will be a large error in the estimate. It is
important that the probability of this occurring be small,
and to estimate this probability we must know the distri-
bution of the estimator.

In the expression for L, Eq. (40), only the components
of the random vector U depend on the actual parameters.
The matrices R and S and the denominator term Tr Q%
depend only on the filter weighting functions, the sam-
pling times, and the assumed parameter values ; and 7;.
The terms URU! and USU! are weighted sums of large
numbers of random variables. They are therefore approx-
imately gaussian, by the Central Limit Theorem, and, as
we show later, their variances are approximately the
same. Thus L is approximately the sum of squares of
two independent gaussian variables with the same vari-
ance, and is therefore approximately Chi-squared dis-
tributed with one degree of freedom. Letting v denote
L($ §, vj i), and m,, m,, o2, o denote the means and
variances of URU' and USU?, and assuming ¢ = o, = o,,
the density of the estimator conditioned on the actual
values » and r is approximately

p(0]7,) zz—;— exp {— ”;\P‘ZQ} 10<"YP_”> (41)

where

0,2

YTy “2)

, . mi +mi
@ = e 09 (43)
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In evaluating the required statistics, we observe that
the coefficients ai;, bij, cij, and d;; depend on the filter
weighting functions and sampling times, as well as on the
assumed values of the parameters, »; and r;. For con-
venience, we suppress this dependence, and also the de-
pendence on w;, since estimation of r is our primary
interest. We explicitly carry the dependence on 7 and ;,
the actual and assumed values of the time difference.

The normalizing factor Tr(Q?) is equal to the sum of
the squares of the elements of Q. Each weighting coeffi-
cient appears twice in Q, so

Tr(Q?) =2 § [@%n (7:) + diun (7:)] cOS? (nAw + ¢)

m,n=1

+ [bin (3) + Cin(7:)] sin?® (nAw + ¢) (44)

Since the coefficients vary slowly in n for fixed r; and
fixed m — n, the trigonometric terms average out approxi-
mately to %, and

N

Tr(Q)) = 3

myon=1

a?nn (Ti) + b12nn (Ti) + C:r)‘rm (Ti) + dfnn (Ti)
(45)

To evaluate the means and variances, we write the
variables in terms of the original observables. First,

N
URU’ = 2 2 [XmZnamn (Ti) + YmWndmn (Ti)] cos nAlD

+ [ _XmWnbmn (Ti) + YmZnCmn (T,‘)] sin nAe
(46)

Using the covariances given by Egs. (14) through (17),
the mean of URU! is

N

M (107) =2 3 [yun () Gyun (5) + o () diun ()]

X cos (nAe) cos (nAo + ¢)
+ [Don (7) Brn (73) + Coun (7) € (73)]
X sin (nAo) sin (nAe + ¢) (47)

~pcos¢ F(ry,7) (48)
where

. F (Ti, T) - E An (T) Qmn (Tvi) + bmn (T) bmn (Ti)

", n

+ Cimn (T) Can (Ti») + dmn (T) dmn (Ti> (49)
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A similar result holds for m, with cos ¢ replaced by sin ¢,
and

m; + m; = p*F* (1;, 7) (50)
Since
Tr (Q?) =

we observe that when the assumed value r; is equal to
the correct value, r,

F(r;,+:) (51)

m2 + mz = p? Tr (Q7) (52)

and is zero when p = 0 or when r; is so far from r that
@nn (1) Gmn (1:) = 0, etc. The product random variables
X, YuWo, Xu,W, and Y,Z, are all independent, and
their variances are essentially unity since p? < < 1. Thus
the variances of weighted sums of these variables are just
the sums of the squares of the weighting coefficients, so

~ 2Tr(Q?) (53)

The factor of four arises because each term in the sum-
mation occurs twice, and the factor of one-half arises from
the trigonometric factors.

Finally,
02
V=0 09 (54)
and
0, for|7i — 7| >>aA
a? = (55)
p2 Tr® (Qz), for TP &< T

A. Estimator SNR

A convenient figure of merit is the signal-to-noise ratio
of the estimator function, which we define to be the ratio
of the squared difference in the means of L (or v) for
7; = 7 and for |7; — 7| >> A, to the variance. The mean
and variance are

E{LYy =4+ (56)
and

Var {L} = 16 + 8a® (57)
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so the SNR is

r? 1 r

R=17%,=3 1

where

r= PTZTr (Q?) = 242— (59)

Clearly the distribution of L depends only on the SNR.

B. SNR Required for Small Estimator Errors

Suppose instead of calculating L (i) for all possible r;
and choosing the maximum, L (+;) is calculated for vari-
ous values until a threshold, say T, is exceeded. Then the
error in 7 will be small if L (- + €) exceeds T for le] < a,
but no other L (r;) calculated exceeds T'. The probability
that this occurs can be calculated from the distributions
of L for the correct and incorrect values of 7;. Figure 1
shows the probability that L () fails to exceed various
thresholds, T, as a function of the SNR. For example, if
the SNR is 12, a threshold of 32 will be exceeded by L ()
with probability about 1 — 10-%. For [7i — 7| >> A or
for p = 0, the density of L is exponential with mean 4, so
the probability that T is exceeded is

P(L>T|p=0)=exp{—T/4) (60)

For T = 32, this probability is 0.33 X 10-*, and it is fairly
likely that T will be exceeded on noise alone if L is cal-
culated for too many incorrect values of r; before it is
calculated for a +; close to r. Clearly there is a tradeoff
between SNR, threshold value, and the initial uncertainty
in 7. A SNR of 10 to 20 should prove adequate when the
initial uncertainty is not too large.

V1. Effect of Quantization or Limiting
of Samples

We have shown that maximization of L results in ap-
proximately ML estimation when the original data sam-
ples X;, Y;, Z; and W; are gaussian. This is no longer true
if the samples are quantized, but the same estimator func-
tion can certainly still be used. The only effect is to
decrease the estimator SNR and increase the error by
decreasing the correlation coefficients. For hard limiting,
the effect is to replace p by (2/7)p throughout, which
causes a loss of approximately (2/7)2 or 4 dB in R. The
reason that p is replaced by (2/x)p is that the means of
the cross products of the data samples are so reduced.
This can be shown by considering two normal variables,
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say x and y, with correlation p, and showing that for
p << 1, the expected value of sgn (xy) is approximately
(2/m)p.

VII. Selection of Sampling Times and
Filter Weighting Functions

The problem of choosing an optimum set of sampling
times and filter weighting functions is considerably more
complex than that of deriving the approximate ML, esti-
mator as a function of these variables. In particular, what
we really wish to optimize is some cost function of the
error in the estimate of r—but we have already admitted
failure in this respect by limiting our choice to the MLE,
However, given our choice of estimator, the parameter R
is clearly a significant figure of merit, as it is closely
related to the probability that the estimation error is no
worse than one sampling interval.

Because we cannot truly optimize, we will make some
reasonable assumptions which are compatible with prac-
tical implementation, and show that we can do quite
well. In particular, R depends on the actual value of = — 8,
so we must be concerned with the minimum of R over
7 — 8. We will obtain a minimum which is almost as large
as possible,

The estimator SNR increases with the input SNR and
Tr (Q%), which in turn depends on the number of samples,
on v — §(¢), and on the sampling and fltering. Since
Tr (Q?) is roughly proportional to N, we define K such that

Ty 1 :
K = T = IN % % a'?rm + b?nn -+ Cfnn + dmn (61>

The functions a, b, ¢, and d depend on r — 8 (t). However,
since they are constant for fixed m —n when r — 8 is con-
stant, the minimum over r of K is clearly smallest when &
is constant. Then, since the coefficients are nonzero only
for |m —n|<<N

1

Kr.8)=5 3 ain+bin + i+ i (62)

We must now consider the effect of the sampling and
filtering on a, b, ¢, and d.

From here on, we restrict ourselves to using identical
filters in the four channels:

h(t) = he (t) = hy (t) = h: (t) = hy (t) (63)

The justification for this restriction is that this is the only
way that any cross correlation can be as high as p?, and it
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assures that this occurs whenever the signal components
in the two receivers are in the same phase relationship to
the sampling times.

The functions a, b, ¢, and d then become identical ex-
cept for the effect of the sample point skewing, reflected
by A, and 4,. Furthermore, the shape of the function is
the same as the correlation function at the output of the
filter; i.e.,

r0)= [ h@his—de (64

and, letting k = m —n,

o (r — 8) = 1(r — 8 — k)
bun(r —8) =71 r— 8+ A, — kA

(r—8) =1( ) (65)
C,,M(T—S):T(T—S—Al—kA)
dmn(T—s):r(T_‘s+A2—A1'—kA)

Because h («) is nonzero only for 0=a <A, r (r) is non-
zero only for || < 2A. This means that dua, Dmn, Cmn, and
d,.. are nonzero for at most two values of k=m—n. We
now define

A(B)=Zr(B—ka) (66)

k

Because of the symmetry of r(g), this function depends
only on the minimum distance of 8 from an integer mul-
tiple of A.

For a given filter, K depends only on 7 — 8,4, and
A, as

1
K(r— S,Al,Ag)zz[A(r—S) +A(r—38+4,)

+A(r—8—4)
FA(r— 5+ 8, —A)] (67)

We are interested in maximizing the minimum value of K
with respect to r — & by selection A, and A,. If the sam-
ples are not skewed, ie., &; = A, =0, the minimum of K
is the minimum of A, which is the worst we can do. The
best we can do is the average of A, and the closest we can
come to this average is to pick different nonzero values of
A, and A.,.

Garsia, Rodemich, and Rumsey (Ref. 1) have shown
that for all normalized correlation functions ¢ (t) which
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are zero outside of the interval (—1,1),
1
/ ¢t () dit = 0.68698 .. (68)

This bound is exactly the upper bound on the average
of A(B).

We can now show that the moving window filter,

for0=t=A

h(t) =

1
A 3
0, otherwise (69)
is almost optimum. For this filter, the average of A is %—
very close to the upper bound. We achieve a minimum K
of 2%2 by choosing A, = A/2 and A, = A/4, and a mini-
mum of % for A, = A, = A/2, or A, =A/2, A, = 0. The

loss relative to the upper bound is only 0.2 dB in the first
case, and 0.4 dB in the second case.

We define the best minimum value of K to be K.:

21
K. = 55 = 0657 (70)

If no skewing is used, the minimum of K is %; skewing
improves the SNR by 1.0 to 1.2 dB.

A. Real Versus Complex Sampling

By real rather than complex sampling, we mean using
only the sine or cosine components at the receivers. For
example, we use only the X; and Z;, rather than X;, Y,
7., and W;. This may be desirable when memory size or
access time is the limiting factor in implementation.

Using only the X; and Z; is equivalent to letting the
weighting functions in the Y and W channels be zero.
Then by, Cun, and dn, are all zero, and

1
K= N 1§nam" (71)

The worst case is again when 8 is constant, and now sam-
ple time skewing cannot be used to average K over  — 8.
The minimum value of K over r — 8, which we denote
by K,, is

1

K,— = § (72)

JPL TECHNICAL REPORT 32-1526, VOL. X



Since R is proportional to K, the loss for real sampling
compared to complex sampling is

K, 0125
K. 0657

=0.19 (73)

or approximately 7.2 dB.

If the fundamental limitation is memory size, then the
loss is 3 dB less than this, or 4.2 dB, since twice as many
real as complex samples can be taken.

If the sampling rate is limited by the memory speed
rather than by the receiver bandwidth, we must realize
that the sampling rate can be twice as high with real
sampling rather than complex. Real sampling has a dis-
tinct advantage here, because for a fixed estimator SNR,
the error in time estimation is inversely proportional to
sampling rate. Real sampling might be better in spite of
the 4.2-dB loss in SNR, provided that the SNR is high
enough so that 7 is almost certainly resolved to better than
one sampling interval.

B. Final Estimator SNR

Considering the effects of quantization, filtering, and
sampling, the minimum SNR which can be guaranteed is

1 r
R.. =—
w9 1 (74)
1+ o
where
r = KoKp?N (75)

The factor K, is due to quantization, and varies from
(2/7)? for hard limiting to 1 for no quantization. The fac-
tor K depends on the sampling method. If real rather than
complex sampling is used, then

1

For complex sampling with proper skewing,

21

K=K =35

= 0.657 )

VIll. Mean Square Error of Time Estimate

In this section we derive an approximation to the mean
square error in estimation of r using a method similar to
that used by Helstrom (Ref. 2) for ML estimation of the
time of arrival of radar signals. Since the method is valid
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only when the estimator SNR is sufficiently high, a simu-
lation of the received signals and the processing is con-
ducted to test the validity of the approximations at fairly
low SNRs. The simulation confirms the analysis, with the
mean square errors being slightly greater than calcu-
lated, as would be expected considering the approxima-
tions used.

A. Calculation of Mean Square (MS) Error

The first step is to write L in terms of signal and noise
components. We explicitly carry the dependence on r and
on the assumed value r; only when deleting this depen-
dence might be confusing. Let

URU* = £ (z;, 7) + m, (r:) (78)

USU* = s (r;,7) + m, () (79)

where, as before, m, and m, are the means of URU* and
USU?, and r and s are the noise portions. Any slight de-
pendence of r and s on r is neglected. Then

12 +5?

Tr (Q?)

mi + m?

Tr (Q?)

2(rm, + smy)

Tr (Q?)

L(r,r) = (80)

When R is sufficiently high, the quadratic noise terms
become insignificant, and L can be approximated by

L (n) ~L, ('ri, 'r) + M ('ri, -r) (81)
where
_mitmi [F (7:,+)]?
b =TT =F oy Y
and
M (s ) = 2o (8

Since the estimate ? of r is the value of r; which maxi-
mizes L, the derivative of L with respect to r; is zero at
T — 4; Le”

0=L"(ri7) ‘ | = Ly (ri,7) + M’ (74, 7) | (84)

r7=%
i=

where primes denote differentiation with respect to 7;.
We now expand the L{ term in a Taylor series about
r; = 1, and retain only the first order term:

Ly (ri,7) + (7 — #)LY (i, 7) + M’ (73, 7) | =0 (85

i=T
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Since the signal only term L, is maximized at r; = 7, its
derivative there is zero, and

. M’ (Ti,, T) 'r'-|: . M (T, T)
T T " (Ti, 1") | = L,o, (‘r, T) (86)

Finally, since L, does not depend on noise, the mean
square error in the estimate of r is

E {[M’ (r,?)]?
B ) = S

(87)

The terms E {M’?} and L}’ can be evaluated for speci-
fic coefficient functions, with these functions being deter-
mined from Egs. (64) and (69). The coefficients for the
optimum skewing, A, = A/2 and A, = A/4, and normaliz-
ing to 8 =0 and A = 1, are shown in Fig. 2.

For these parameters

” —
LY | =

ot [2[F (r,7)] — 16N T (Q?)
‘4‘[ e Q) ] (88)

Ti=T

and

E(IM 61 = 7o0m

P (49N?) (89)

(16N Tr (Q?) — 2 [F’ (r,7)]*)

Finally, the mean square error is

4 Tr(Q?)
€? (T) =E {(4 - 1')2} = ;)-2— 1N

1

82 — 27 + 1t
4 4 9%
- pzN 49 ( )

(r taken modulo %)

Averaging over 7, the mean square (MS) error is

2 e 16 e )

€ive = G3°N (no limiting) (91)

This MS error is of course increased by a factor of
(7/2)? when hard limiting is used, to

4= 0.626

e, = W =N (hard limiting) (92)
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B. Comparison of R and MS Error

It is interesting that for high SNRs, both R(7) and
€ (7) vary with r in direct proportion to Tr (Q?). This is
not what one would intuitively expect, since one would
expect the MS error to be inversely proportional to R.
The explanation for this is that for high SNRs, the varia-
tion of € with - depends on the second derivative of the
mean of the estimator function, which introduces the
particular dependence on Tr (Q°). In any case, the effect
is very minor, since Tr (Q?) varies only plus 3 percent and
minus 1.5 percent about its average value.

C. Simulation Results

A simulation was conducted for two different SNRs and
two values of 7, with the resulting rms errors compared
to the calculated values in Table 1. The rms errors are
the average of 160 cases for each set of parameters, using
N = 19840.

The rms errors obtained in the simulation were typically
about ten percent higher than the calculated values. This
is because the calculated values are not accurate at the
relatively low SNRs used, primarily because typical
errors in ? are large enough that truncation of the power
series for L, causes significant error. There is also an error
in the MS error of approximately 1/(4R) percent due to
neglecting the quadratic noise terms. In Table 1, the ob-
served errors are higher for - = 0.125 than for » =0,
whereas the calculated errors are higher for » =0. We
again feel that the calculated values are in error at the
SNRs in the simulation, because of the series approxima-
tion. Unfortunately, it was not practical to conduct fur-
ther simulations at higher SNRs, because of computer
time limitations. Higher SNRs require more computer
time, as N must be increased rather than p, for increasing
p would render the assumed degradation of (r/2)* due
to hard limiting to be in error.

IX. Performance of Proposed System

The system proposed for DSN time synchronization is
performance limited by the antenna sizes and receiver
noise temperatures and by the restriction of using an
XDS 920 computer at each site for data buffering. The
920 computers limit the sampling rate to 500 kbps, and
the total number of bits of data to 300,000. The antennas
assumed are one of 64 m (210 ft), with a noise tempera-
ture of 25 K, and one of 26 m (85 ft), with a noise tem-
perature of 40 K.

A radio star with a flux density of 1 fu causes an in-
crease in system temperature of 0.6 K and 0.1 K for 64 m

JPL TECHNICAL REPORT 32-1526, VOL. X



and 26 m antennas, respectively. Therefore, letting S be
the source intensity, the input SNR is approximately

0.06 S
= = -5 §2
¥ = o> o5 = 6X10°8 (93)
and, for complex sampling,
pN =98> (94)

For a system using complex sampling and hard limiting,
r = KKyp*N
. o\ 2
= (0.657) <—> 0N
™
= 2482 (95)

The minimum output SNR is

Rmin =

DO
[y
+
N

~
~

128z (96)

Il

Mo =

If real samples are used, N doubles but K drops to %,
and

r=~ 09182 (97)

R~ 0458 (98)

A. Post Detection Integration

The final SNR can be improved by filling the memory
in the computer at each station several times, writing out
onto magnetic tape between fills. Since it would take
several seconds to dump the core onto tape, the local
oscillator phase may change between batches of data.
Nevertheless, the SNR can be increased in direct propor-
tion to the number of batches of data. If I batches of
data are used, the final SNR is

r

(99)

ro|t~

1
1+ S
where 7 is as before. With ten batches of data and com-
plex sampling, a SNR of 10 could be obtained from a 1-fu
source, and an SNR of over 40 from a 2-fu source.
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Table 1. Simulation results

RMS estimation error

2K R

? T ™) Simulation  Calculated
71.42 0 9.53 0.104 0.0950
71.42 0.125 9.10 0.114 0.0927
71.42 Average 9.25 0.109 0.0935

285.7 0 38.8 0.0512 0.0475

285.7 0.125 37.1 0.0555 0.0464

285.7 Average 377 0.0534 0.0418
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COEFFICIENT AMPLITUDE
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Fig. 1. Probability that estimator does not exceed
threshold for correct value of r;
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Fig. 2. Weighting coefficients for optimum sampling
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